Natural flavonoid morin showed anti-bacterial activity against Vibrio cholera after binding with cell division protein FtsA near ATP binding site.

2021 
Abstract Background Increasing antibiotic-resistance in bacterial strains has boosted the need to find new targets for drug delivery. FtsA, a major bacterial divisome protein can be a potent novel drug-target. Methods and results This study finds, morin (3,5,7,2′,4′-pentahydroxyflavone), a bio-available flavonoid, had anti-bacterial activities against Vibrio cholerae, IC50 (50 μM) and MIC (150 μM). Morin (2 mM) kills ~20% of human lung fibroblast (WI38) and human intestinal epithelial (HIEC-6) cells in 24 h in-vitro. Fluorescence studies showed morin binds to VcFtsA (FtsA of V. cholerae) with a Kd of 4.68 ± 0.4 μM, inhibiting the protein's polymerization by 72 ± 7% at 25 μM concentration. Morin also affected VcFtsA's ATPase activity, recording ~80% reduction at 20 μM concentration. The in-silico binding study indicated binding sites of morin and ATP on VcFtsA had overlapping amino acids. Mant-ATP, a fluorescent ATP-derivative, showed increased fluorescence on binding to VcFtsA in absence of morin, but in its presence, Mant-ATP fluorescence decreased. VcFtsA-S40A mutant protein did not bind to morin. Conclusions VcFtsA–morin interaction inhibits the polymerization of the protein by affecting its ATPase activity. The destabilized VcFtsA assembly in-turn affected the cell division in V. cholerae, yielding an elongated morphology. General significance Collectively, these findings explore the anti-bacterial effect of morin on V. cholerae cells targeting VcFtsA, encouraging it to become a potent anti-bacterial agent. Low cytotoxicity of morin against human cells (host) is therapeutically advantageous. This study will also help in synthesizing novel derivatives that can target VcFtsA more efficiently.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    1
    Citations
    NaN
    KQI
    []