Evolution of Carbon Fiber Microstructure During Carbonization and High-Temperature Graphitization Measured In Situ Using Synchrotron Wide-Angle X-ray Diffraction

2015 
This paper will discuss the structure-property model developed that correlates the tensile modulus to the elastic properties and angular distribution of constituent graphitic layers for carbon fiber derived from a polyethylene precursor. In addition, a high-temperature fiber tensile device was built to enable heating of carbon fiber bundles at a variable rate from 25 °C to greater than ∼2300 °C, while simultaneously applying a tensile stress. This capability combined with synchrotron wide-angle x-ray diffraction (WAXD), enabled observation in situ and in real time of the microstructural transformation from different carbon fiber precursors to high-modulus carbon fiber. Experiments conducted using PAN- and PE-derived fiber precursors reveal stark differences in their carbonization and high-temperature graphitization behavior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    2
    Citations
    NaN
    KQI
    []