Possible role of factor XIII subunit A in Fcγ and complement receptor-mediated phagocytosis

2004 
Abstract Besides its traditional role in hemostasis, factor XIII subunit A (FXIII-A) is supposed to function as a cellular transglutaminase and to be involved in certain intracellular processes, including cytoskeletal remodeling. To investigate its intracellular role, the aim of the present study was to follow changes in FXIII-A production in combination with the receptor-mediated phagocytic activities of monocytes/macrophages and to examine the phagocytic functions of monocytes in patients with FXIII-A deficiency. Human blood monocytes were isolated from the buffy coats of healthy volunteers and cultured for 4 days. The FcγR-mediated phagocytosis of sensitized erythrocytes (EA) and the complement receptor (CR)-mediated phagocytosis of complement-coated yeast particles were studied during monocyte/macrophage differentiation. Changes in the gene expression of FXIII-A were detected by real-time quantitative RT-PCR. FXIII-A protein production was investigated with fluorescent image analysis at single cell level and Western immunoblot analysis. Both the FcγR and CR-mediated phagocytosis increased during culturing, which peaked on day 3. The phagocytic activity of the cells could be markedly inhibited with monodansylcadaverine, an inhibitor of the transglutaminase-induced crosslinking of proteins. The phagocytosis of EA, complement-coated and uncoated yeast particles was found to be strongly diminished in monocytes of FXIII-A deficient patients. The phagocytic functions of cultured cells showed a change in parallel with the alterations in FXIII-A mRNA expression, as well as with that in FXIII-A in protein synthesis detected by image and Western immunoblot analyses in concert. Our results suggest that FXIII-A plays a role in the Fcγ and complement receptor-mediated phagocytic activities of monocytes/macrophages.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    59
    Citations
    NaN
    KQI
    []