Remote Fault-Tolerant Control for Industrial Smart Surveillance System

2021 
We design a remote fault-tolerant control for an industrial surveillance system. The designed controller simultaneously tolerates the effects of local faults of a node, the propagated undesired effects of neighboring connected nodes, and the effects of network-induced uncertainties from a remote location. The uncertain network-induced time delays of communication links from the sensor to the controller and from the controller to the actuator are modeled using two separate Markov chains and packet dropouts using the Bernoulli process. Based on linear matrix inequalities, we derive sufficient conditions for output feedback-based control law, such that the controller does not directly depend on output, for stochastic stability of the system. The simulation study shows the effectiveness of the proposed approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []