Various wastewaters treatment by sono-electrocoagulation process: A comprehensive review of operational parameters and future outlook

2021 
Abstract Electrochemical processes are a promising alternative to traditional water treatment systems because they have advantages than conventional techniques such as chemical storage, small treatment systems, no alkalinity depletion, remote adjustment, and cost-effectiveness. The most crucial electrochemical method is Electrocoagulation (EC). Through creating cationic species, the EC causes the neutralization of pollutant surface charges and destabilizes suspended, emulsified or dissolved contaminants led to attracting particles of opposite charge and form flocculants. The main drawback of the EC process is a passive film forming on the electrode surface over time. Ultrasonic (US) waves breaking down sediments formed at the electrode surface and generate high amounts of radical species to remove pollutants by creating high-pressure points inside the solution during the cavitation phenomenon. Although EC systems are considered as an exemplary renaissance in water and wastewater treatment, various parameters related to these types of systems in pollutant degradation have not been fully addressed. To present a comprehensive vision of the current state of the art, and progress the treatment efficiency and agitate new studies in these fields, this review aimed to provide an overview of electrocoagulation’s application in pollutant degradation, besides the advantages, associated disadvantages and further strategies for improving the performance of this technique. Moreover, this review discussed various parameters affecting the EC/US process, including nanoparticles addition, electrolyte concentration, current intensity, electrode distance, temperature, oxidant addition, pH, pollutant concentration, reaction time, and electrode combination, chloride addition, and ultrasonic frequency. Also, the efficiency of the EC/US process for disinfection, as well as treatment of car-washing, textile, pulp, and paper industry, oily, brewery wastewater, surfactant, humic acid, and heavy metals, are addressed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    132
    References
    24
    Citations
    NaN
    KQI
    []