Angular systematics-free cosmological analysis of galaxy clustering in configuration space

2021 
Galaxy redshift surveys are subject to incompleteness and inhomogeneous sampling due to the various constraints inherent to spectroscopic observations. This can introduce systematic errors on the summary statistics of interest, which need to be mitigated in cosmological analysis to achieve high accuracy. Standard practices involve applying weighting schemes based on completeness estimates across the survey footprint, possibly supplemented with additional weighting schemes accounting for density-dependent effects. In this work, we concentrate on pure angular systematics and describe an alternative approach consisting in analysing the galaxy two-point correlation function where angular modes are nulled. By construction, this procedure removes all possible known and unknown sources of angular observational systematics, but also part of the cosmological signal.We use a modified Landy-Szalay estimator for the two-point correlation function that relies on an additional random catalogue where angular positions are randomly drawn from the galaxy catalogue, and provide an analytical model to describe this modified statistic. We test the model by performing an analysis of the full anisotropic clustering in mock catalogues of luminous red and emission-line galaxies at 0.43 < z < 1.1. We find that the model fully accounts for the modified correlation function in redshift space, without introducing new nuisance parameters. The derived cosmological parameters from the analysis of baryon acoustic oscillations and redshift-space distortions display slightly larger statistical uncertainties, mostly for the growth rate of structure parameter fs8 that exhibits a 50% statistical error increase, but free from angular systematic error.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []