The Zener-Emitter: A novel superluminescent Ge optical waveguide-amplifier with 4.7 dB gain at 92 mA based on free-carrier modulation by direct Zener tunneling monolithically integrated on Si

2016 
We report on the first experimental demonstration of a monolithic integrated Group-IV Ge semiconductor optical amplifier (SOA) — the Ge Zener-Emitter (ZE). The ZE is a device featuring light amplification up to 4.7 dB (92 mA) at center wavelength of 1700 nm and gain-bandwidth of 98 nm on Si (100). Our novel direct Zener band-to-band tunneling (BTBT) injection method enables low-voltage electron emission beyond the Boltzmann-limit (38 mV/dec at 1.55 K, 88 mV/dec at 300 K), achieving population-inversion at 0.45 V (41 mA). The ZE possesses a Si-Ge-Si hetero-structure with excellent CMOS integration compatibility by planar device design (550 nm) and an ultra-thin (100 nm) Ge virtual substrate (VS) on Si (100). Moreover, the ZE shows superior light emission properties with pulsed lasing at 1667 nm and superluminescent LED characteristic (150 cm −1 max. gain at 270 K, 100 cm −1 max. gain at 300 k). The developed ZE device presents a promising feature to monolithic Si-photonics filling the gap for energy-efficient light emission and amplification in a small footprint (1 mm) integrated waveguide-amplifier.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    8
    Citations
    NaN
    KQI
    []