Impacts of vegetation on particle concentrations in roadside environments.

2021 
Abstract In roadside environments, commuters are exposed to a high level of traffic-related pollution. Despite vegetation is often used to mitigate air pollution in road environments, its air quality impacts are complex and could be both positive or negative depending on specific conditions. This study conducted field measurements to assess the air quality impacts of roadside vegetation. Three common street vegetation configurations (dense vegetation, porous vegetation, and clearing) were selected and the concentrations of size-resolved particles and black carbon were measured. Results show that dense vegetation formed an accumulation area of particle pollutants on the sidewalk and bikeway, which was attributable to the increased deposition of pollutants. Compared with porous vegetation, the increase in particle concentrations before dense vegetation was 0-35% on the sidewalk (closer to vegetation) and 0-6% on the bikeway. Due to high homogenization, fine particles (0.3-1 μm) showed low variability among different sample points, while coarse particles (>1 μm) showed high variability and presented a significant increase in concentration before dense vegetation. Porous vegetation showed weak interception effects on pollutants and particle concentrations before porous vegetation were close to those in the clearing. The horizontal decay of particle concentrations in porous and dense vegetation showed that particle pollutants were difficult to penetrate dense vegetation, which the concentrations of particles presented a pronounced increase in the front part (0-5 m) of dense vegetation but also showed a large drop across it. These results suggest that vegetation serves as a good filter to clean the air and could improve the air quality away from the vegetation but could also worsen the air quality close to the vegetation. This study provides an insight into the environmental impacts of roadside vegetation, which could have practical implications in air pollution abatement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    2
    Citations
    NaN
    KQI
    []