Assessing the adaptability of maize phenology to climate change: The role of anthropogenic-management practices.

2021 
Abstract Phenology has been regarded as an essential bio-indicator of climate change widely. Quantifying the crop phenological changes caused by climate change and anthropogenic-management practices can help formulate effective climate change adaptation strategies. In this study, the effects of climate change and anthropogenic-management practices on maize phenology (spring, summer, and intercropping maize) in China were distinguished based on historical meteorological and phenological data (1981–2010) of 114 stations using the first-order difference regression method. Our results show: (1) The vegetative growing period of spring and intercropping maize was extended, whereas that of summer maize was shortened. The reproductive growing periods of spring, summer, and intercropping maize were extended. (2) Isolated impacts of climate change shortened the vegetative growing period of spring maize, summer maize, and intercropping maize by 0.19, 1.06, and 3.12 d decade−1, respectively, while the reproductive growing period was extended by 0.19, 0.74, and 3.47 d decade−1, respectively. (3) The contribution of temperature to maize phenology was greater in the northwest inland maize zone and north spring maize zone than in other regions, whereas the contribution of sunshine hours was higher in Huang-Huai Plain intercropping maize zone and the southwest mountain hills maize zone. (4) The effects of anthropogenic-management practices on maize phenological stages such as sowing, emergence, and maturity were generally greater than that of climate change, which has delayed the phenological stages of summer and intercropping maize and extended the growing period of spring maize. The focus should be paid to the emergence, jointing, and milky stages to increase the water use efficiency in the northwest inland maize zone. The findings provide a scientific basis for improving the adaptability of agricultural systems in climate change.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    1
    Citations
    NaN
    KQI
    []