Bifurcation Curves of Two-Dimensional Quantum Walks.

2019 
The quantum walk differs fundamentally from the classical random walk in a number of ways, including its linear spreading and initial condition dependent asymmetries. Using stationary phase approximations, precise asymptotics have been derived for one-dimensional two-state quantum walks, one-dimensional three-state Grover walks, and two-dimensional four-state Grover walks. Other papers have investigated asymptotic behavior of a much larger set of two-dimensional quantum walks and it has been shown that in special cases the regions of polynomial decay can be parameterized. In this paper, we show that these regions of polynomial decay are bounded by algebraic curves which can be explicitly computed. We give examples of these bifurcation curves for a number of two-dimensional quantum walks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []