Ionizing Radiation and Bacterial Challenge Alter Splenic Cytokine Gene Expression

2000 
Irradiation increases susceptibility to bacterial infection. Exogenous proinflammatory cytokines can alter the response of mice to γ radiation, but the role of endogenous inflammatory cytokines after bacterial infection in irradiated animals is not known. Gene expression of hematopoietic (GM-CSF) and proinflammatory (IL-1β, IL-6 and TNF-α) cytokines were examined in spleens of B6D2F1/J female mice after irradiation alone (1.0- and 7.0-Gy), and after irradiation followed by Klebsiella pneumoniae s.c. challenge 4 days postirradiation by using the reverse transcription-polymerase chain reaction (RT-PCR) and Southern blot hybridization. At 4, 8, and 24 h after bacterial challenge in 7.0-Gy-irradiated mice, GM-CSF mRNA increased (p<0.05). TNF- α mRNA in irradiated mice were slightly decreased, whereas after bacterial challenge, TNF-α mRNA elevated at 30 h in 7.0-Gy-irradiated mice; at 4, and 8 h in 1.0-Gy-irradiated mice, and at 1 h in sham-irradiated mice (p<0.05). IL-6 mRNA displayed a biphasic response in 7.0-Gy-irradiated mice, and, after bacterial challenge, in both irradiated mice (1.0- and 7.0-Gy) and sham-irradiated mice. IL-1β mRNA remained at or below normal for 8 h and increased at 24 h after bacterial challenge on day 4 in 7.0-Gy-irradiated mice. These results indicate that sublethal gamma radiation alters the patterns of the hematopoietic and proinflammatory cytokine responses to bacterial challenge in vivo. Consequently, treatment protocols may need to take into account changes in cytokine gene responses to resolve infection after irradiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    4
    Citations
    NaN
    KQI
    []