Potential Role of Methanogens in Microbial Reductive Dechlorination of Organic Chlorinated Pollutants In Situ.

2021 
Previous studies often attribute microbial reductive dechlorination to organohalide-respiring bacteria (OHRB) or cometabolic dechlorination bacteria (CORB). Even though methanogenesis frequently occurs during dechlorination of organic chlorinated pollutants (OCPs) in situ, the underestimated effect of methanogens and their interactions with dechlorinators remains unknown. We investigated the association between dechlorination and methanogenesis, as well as the performance of methanogens involved in reductive dechlorination, through the use of meta-analysis, incubation experiment, untargeted metabolomic analysis, and thermodynamic modeling approaches. The meta-analysis indicated that methanogenesis is largely synchronously associated with OCP dechlorination, that OHRB are not the sole degradation engineers that maintain OCP bioremediation, and that methanogens are fundamentally needed to sustain microenvironment functional balance. Laboratory results further confirmed that Methanosarcina barkeri (M. barkeri) promotes the dechlorination of γ-hexachlorocyclohexane (γ-HCH). Untargeted metabolomic analysis revealed that the application of γ-HCH upregulated the metabolic functioning of chlorocyclohexane and chlorobenzene degradation in M. barkeri, further confirming that M. barkeri potentially possesses an auxiliary dechlorination function. Finally, quantum analysis based on density functional theory (DFT) indicated that the methanogenic coenzyme F430 significantly reduces the activation barrier to dechlorination. Collectively, this work suggests that methanogens are highly involved in microbial reductive dechlorination at OCP-contaminated sites and may even directly favor OCP degradation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    2
    Citations
    NaN
    KQI
    []