A mobile differential absorption lidar for simultaneous observations of tropospheric and stratospheric ozone over Tibet

2019 
We developed a mobile ozone differential absorption lidar system to simultaneously measure the vertical profiles of tropospheric and stratospheric ozone from an altitude of ~5 to 50 km. The system emits four laser beams at wavelength of 289 nm, 299 nm, 308 nm and 355 nm and receives their corresponding Mie/Rayleigh backscattering return signals, and two N2 Raman return signals at 332 nm and 387 nm shifted from 308 nm and 355 nm, respectively. An assembled telescope array with four 1.25-m telescopes (effective diameter > 2 m) collects the Rayleigh and Raman backscattering signals at 308/332 and 355/387 nm. This system is currently deployed at the Yangbajing Observatory in Tibet (~4300 m elevation) and has begun observations in regular campaign mode since October 2017. The lidar results agree very well with those observed by the Aura/MLS satellite. This novel ozone lidar system operates at the highest elevation of any such system in the world. The higher elevation and larger receiver aperture of this system yield a higher signal-to-noise ratio and lower statistical uncertainty.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    8
    Citations
    NaN
    KQI
    []