Chlorine and Bromine Isotope Analysis of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers Using Gas Chromatography-Quadrupole Mass Spectrometry

2020 
Abstract A compound-specific chlorine/bromine isotope analysis (Cl-/Br-CSIA) method was developed using gas chromatography-quadrupole mass spectrometry for polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), which are toxic to human health and are frequently detected in various abiotic and biotic media. For PCB congeners, the molecular ion method for a concentration of 0.5–10.0 ppm, a dwell time of 20–100 ms, a relative EM voltage of 200 V, an electric current of 34 μA, and an ionization energy of 70 eV was determined as the most suitable scheme, which obtained standard deviations (SDs) of chlorine isotope ratios ranging from 0.00008 to 0.00068. As for the PBDE congeners, the lowest SDs, ranging from 0.00050 to 0.00172, were determined using the top four ion method with a concentration of 5–10 ppm and a dwell time of 20–50 ms. Both the chlorine and bromine isotope ratios showed strong concentration dependencies. Therefore, external standardization or detecting chlorine and bromine isotope ratios at a uniform concentration level is necessary to eliminate the concentration effect. In addition, 13C-correction is critical to remove interference from carbon isotopes. This newly developed Cl-/Br-CSIA method successfully determined the chlorine/bromine isotope ratios of PCBs/PBDEs in technical mixtures and traced the chlorine/bromine isotope ratio variations of PCBs/PBDEs in photodegradation experiments, thereby suggesting that it is a promising tool for assessing the sources and transformation processes of PCBs and PDBEs in the environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    5
    Citations
    NaN
    KQI
    []