Self-bound dipolar droplets and supersolids in molecular Bose-Einstein condensates

2021 
We numerically study the many-body physics of molecular Bose-Einstein condensates with strong dipole-dipole interactions. We observe the formation of self-bound droplets, and explore phase diagrams that feature a variety of exotic supersolid states. In all of these cases, the large and tunable molecular dipole moments enable the study of unexplored regimes and phenomena, including liquid-like density saturation and universal stability scaling laws for droplets, as well as pattern formation and the limits of droplet supersolidity. We discuss a realistic experimental approach to realize both the required collisional stability of the molecular gases and the independent tunability of their contact and dipolar interaction strengths. Our work provides both a blueprint and a benchmark for near-future experiments with bulk molecular Bose-Einstein condensates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    96
    References
    0
    Citations
    NaN
    KQI
    []