A Century of Research Leading to Understanding the Scientific Basis of Selective Mineral Flotation and Design of Flotation Collectors

2019 
The design and development of selective flotation collectors has been the key to the remarkable success of flotation in beneficiating complex, difficult-to-process ores. Sustained research efforts in the field over the past hundred years have led to delineating the scientific basis of selective mineral flotation in terms of the crystal chemistry and the surface and colloid chemistry of minerals including their solubility, and the aqueous solution chemistry of added reagents. It is now well-established that the electrical double layer theory (EDL) is the most powerful means of quantifying the relative strength of mineral-reagent interactions in the case of nonsulfide minerals. We illustrate the utility and the power of the EDL in delineating the science underlying selective mineral flotation with the help of a few examples taken from our own work, in particular on the selective flotation of rare-earth minerals (bastnaesite) from associated semisoluble minerals (barite and calcite) using alkyl hydroxamate collectors and the flotation separation of lithium-containing minerals (spodumene) from associated alumino-silicate minerals with oleate (fatty acids). Both of these mineral separation systems are of contemporary research interest and of immense value to the industry today. Recent advances in utilizing molecular modeling computations, particularly in the context of quantifying the effect of crystal chemistry and the relative distribution of adsorption sites available on mineral cleavage planes, are also reviewed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    6
    Citations
    NaN
    KQI
    []