Reconstruction of the glutamate decarboxylase system in Lactococcus lactis for biosynthesis of food-grade γ-aminobutyric acid.

2021 
Gamma-aminobutyric acid (GABA), an important bioactive compound, is synthesized through the decarboxylation of L-glutamate (L-Glu) by glutamate decarboxylase (GAD). The use of lactic acid bacteria (LAB) as catalysts opens interesting avenues for the biosynthesis of food-grade GABA. However, a key obstacle involved in the improvement of GABA production is how to resolve the discrepancy of optimal pH between the intracellular GAD activity and cell growth. In this work, a potential GAD candidate (LpGadB) from Lactobacillus plantarum was heterologously expressed in Escherichia coli. Recombinant LpGadB existed as a homodimer under the native conditions with a molecular mass of 109.6 kDa and exhibited maximal activity at 40°C and pH 5.0. The Km value and catalytic efficiency (kcat/Km) of LpGadB for L-Glu was 21.33 mM and 1.19 mM-1s-1, respectively, with the specific activity of 26.67 μM/min/mg protein. Subsequently, four C-terminally truncated LpGadB mutants (GadBΔC10, GadBΔC11, GadBΔC12, GadBΔC13) were constructed based on homology modeling. Among them, the mutant GadBΔC11 with highest catalytic activity at near-neutral pH values was selected. In further, the GadBΔC11 and Glu/GABA antiporter (GadC) of Lactococcus lactis were co-overexpressed in the host L. lactis NZ3900. Finally, after 48 h of batch fermentation, the engineered strain L. lactis NZ3900/pNZ8149-gadBΔC11C yielded GABA concentration up to 33.52 g/L by applying a two-stage pH control strategy. Remarkably, this is the highest yield obtained to date for GABA from fermentation with L. lactis as a microbial cell factory.Key points• The GadB from L. plantarum was heterologously expressed in E. coli and biochemically characterized.• Deletion of the C-plug in GadB shifted its pH-dependent activity toward a higher pH.• Reconstructing the GAD system of L. lactis is an effective approach for improving its GABA production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []