An Acid-Triggered Degradable and Fluorescent Nanoscale Drug Delivery System with Enhanced Cytotoxicity to Cancer Cells.

2015 
To reduce side-effects of anticancer drugs, development of nanocarriers with precise biological functions is a critical requirement. In this study, the multifunctional nanoparticles combining imaging and therapy for tumor-targeted delivery of hydrophobic anticancer drugs were prepared via self-assembly of amphiphilic copolymers obtained using RAFT polymerization, specifically, acid-labile ortho ester and galactose. First, boron-dipyrromethene dye-conjugated chain transfer agent provides fluorescent imaging capability for diagnostic application. Second, nanoparticles were stable under physiological conditions but degraded in acidic tumor microenvironment, leading to enhanced anticancer efficacy. Third, the application of biocompatible glycopolymers efficiently increased the target-to-background ratio through carbohydrate–protein interactions. Data from cell viability, cellular internalization, flow cytometry, biodistribution and anticancer efficacy tests showed that the drug-loaded nanoparticles were capab...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    28
    Citations
    NaN
    KQI
    []