A novel mask proximity correction software combining accuracy and reduced writing time for the manufacturing of advanced photomasks

2012 
The new generations of photomasks are seen to bring more and more challenges to the mask manufacturer. Maskshops face two conflicting requirements, namely improving pattern fidelity and reducing or at least maintaining acceptable writing time. These requirements are getting more and more challenging since pattern size continuously shrinks and data volumes continuously grows. Although the classical dose modulation Proximity Effect Correction is able to provide sufficient process control to the mainstream products, an increased number of published and wafer data show that the mask process is becoming a nonnegligible contributor to the 28nm technology yield. We will show in this paper that a novel approach of mask proximity effect correction is able to meet the dual challenge of the new generation of masks. Unlike the classical approach, the technique presented in this paper is based on a concurrent optimization of the dose and geometry of the fractured shots. Adding one more parameter allows providing the best possible compromise between accuracy and writing time since energy latitude can be taken into account as well. This solution is implemented in the Inscale software package from Aselta Nanographics. We have assessed the capability of this technology on several levels of a 28nm technology. On this set, the writing time has been reduced up to 25% without sacrificing the accuracy which at the same time has been improved significantly compared to the existing process. The experiments presented in the paper confirm that a versatile proximity effect correction strategy, combining dose and geometry modulation helps the users to tradeoff between resolution/accuracy and e-beam write time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []