Unstable twin in body-centered cubic tungsten nanocrystals.

2020 
Twinning is commonly activated in plastic deformation of low stacking-fault face-centered cubic (Fcc) metals but rarely found in body-centered cubic (Bcc) metals under room temperature and slow strain rates. Here, by conducting in situ transmission electron microscopy (TEM) at atomic scale, we discover that, in stark contrast to those in most Fcc metals, a majority of deformation twins in Bcc metals are unstable and undergo spontaneously detwinning upon unloading. Such unexpected instability of Bcc twins is found to be closely related to the prevalence of the inclined twin boundaries—a peculiar structure where twin boundaries are not parallel to the twinning plane, and the degree of instability is in direct proportion to the fraction of the inclined twin boundary. This work provides significant insights into the structure and stability of deformation twins in Bcc metals. Body-centred cubic metals rarely show twinning during deformation. Here, the authors use high resolution transmission electron microscopy to show tungsten, a body-centred cubic metal, spontaneously undergoes detwinning when unloaded.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    8
    Citations
    NaN
    KQI
    []