Phase Space Crystal Vibrations: Chiral Edge States with Preserved Time-reversal Symmetry.

2021 
Chiral transport along edge channels in Chern insulators represents the most robust version of topological transport, but it usually requires breaking of the physical time-reversal symmetry. In this work, we introduce a different mechanism that foregoes this requirement, based on the combination of the symplectic geometry of phase space and interactions. Starting from a honeycomb phase-space crystal of atoms, which can be generated by periodic driving of a one-dimensional interacting quantum gas, we show that the resulting vibrational lattice waves have topological properties. Our work provides a new platform to study topological many-body physics in dynamical systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []