Highly Thermally Conductive 3D Printed Graphene Filled Polymer Composites for Scalable Thermal Management Applications

2021 
Efficient thermal transportation in a preferred direction is highly favorable for thermal management issues. The combination of 3D printing and two-dimensional (2D) materials such as graphene, BN, and so on enables infinite possibilities for hierarchically aligned structure programming. In this work, we report the formation of the asymmetrically aligned structure of graphene filled thermoplastic polyurethane (TPU) composites during 3D printing process. The as-printed vertically aligned structure demonstrates a through-plane thermal conductivity (TC) up to 12 W m-1 K-1 at 45 wt % graphene content, which is ∼8 times of that of a horizontally printed structure and surpasses many of the traditional particle reinforced polymer composites. The superior TC is mainly attributed to the anisotropic structure design that benefited from the preferable degree of orientation of graphene and the multiscale dense structure realized by finely controlling the printing parameters. Finite element method (FEM) confirms the essential impact of anisotropic TC design for highly thermal conductive composites. This study provides an effective way to develop 3D printed graphene-based polymer composites for scalable thermal-related applications such as battery thermal management, electric packaging, and so on.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    11
    Citations
    NaN
    KQI
    []