The Role of Endogenous Enzymes during Malting of Barley and Wheat Varieties in the Mitigation of Styrene in Wheat Beer.

2020 
Knowledge of the biochemical processes responsible for the release of phenolic acids (precursors of vinyl aromatics) during malting is important to find mitigation strategies for the toxicologically relevant styrene (formed from cinnamic acid) in wheat beer. Therefore, grain and malts of four barley and three wheat varieties were screened for the activities of various enzymes and the amounts of nonstarch polysaccharides (to which the phenolic acids are bound to a certain extent). During malting, a very strong degradation of β-glucan, synonymous to a depletion of the cell walls, was found, suggesting that a partial degradation of cell walls cannot have an effect on the release of phenolic acids. In barley malts, water-extractable arabinoxylan contents were between 0.59 and 0.79 g/100 g dm and in wheat malts between 0.93 and 1.51 g/100 g dm. Additionally, higher soluble ferulic acid contents in wheat wort compared to barley wort indicated that the degradation of nonstarch polysaccharides has an impact on the release of phenolic acids. For the feruloyl esterase, higher activities were found in malts of the barley varieties. However, this fact was not reflected by the free phenolic acid contents in those malts. Correlation coefficients between the protease activity and the feruloyl esterase, α- and β-amylase, and β-glucanase activities were proven to be insignificant, highlighting that the protease activity had no effect on the activities of these other enzymes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    2
    Citations
    NaN
    KQI
    []