Switching of metabolic programs in response to light availability is an essential function of the cyanobacterial circadian output pathway

2017 
The cycle of day and night is one of the most recurrent and predictable environmental changes on our planet. Consequently, organisms have evolved mechanisms that allow them to measure time over 24 hours and prepare for the periodic changes between light and dark. These mechanisms, known as circadian clocks, alter the activity of some of the organism’s genes in a rhythmic way across the course of a day. This in turn causes certain behaviors and biological activities of the organism to follow a daily cycle. The bacterium Synechococcus elongatus needs to be able to track the daily cycle of light and dark because it performs photosynthesis and depends on sunlight to form sugars, which can later be broken down to release energy. The time information encoded in the circadian clock of S. elongatus is transmitted to the protein RpaA, which drives the regular circadian changes in gene activity in the cell. If RpaA is removed from the cell or prevented from working, S. elongatus can no longer control rhythmic gene activity and is unable to survive the night. To better understand how the circadian system schedules biological tasks to help an organism to survive, Puszynska and O'Shea studied S. elongatus cells. This revealed that the bacteria normally prepare for darkness by storing sugars during the day and activating several genes at dusk to make enzymes that are required to break down stored sugars. This provides the cells with energy that they need to survive the night. But mutant cells that lack the gene that produces RpaA do not prepare for darkness; they do not accumulate a store of sugars during the day or activate the vital genes at dusk. They have low internal energy levels in the dark and they cannot survive long periods of darkness. Providing the mutant cells with sugar and restoring the activity of the genes responsible for breaking down sugar enabled the cells to maintain energy in darkness and survive the night. It therefore appears that one role of the circadian system of S. elongatus is to coordinate building up sugar reserves during the day with breaking down sugar stores to generate energy during the night. Puszynska and O'Shea also found many other genes that are not activated at dusk in the mutant cells. It will therefore be important to study whether other pathways that help cells to survive and grow are defective in these mutant cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    26
    Citations
    NaN
    KQI
    []