Preparation and Electromechanical Performance Analysis of Self-healing Electrostrictive Polymer

2020 
The development of self-healing electrostrictive materials is helpful to improve the life of flexible electronic devices. In this paper, a polar elastomer-modified dielectric elastomer has achieved self-healing of shear damage at room temperature. The MG-SBS material was obtained by grafting methyl methyl thioglycolate (MG) onto styrene-butadiene- styrene (SBS) block copolymer by click chemical reaction. Tensile testing, mechanical dynamic thermal analysis, and broadband dielectric spectroscopy were used to analyze the performance of MG-SBS. Studies have shown that the CH/$\pi$ bond enables MG-SBS materials to achieve self-healing of shear damage. MG-SBS is close to the electrostrictive properties of acrylic at lower temperature. The temperature stability of the electrostrictive performance is its unique advantage. The material will help improve the damage self-healing ability and temperature adaptability of flexible electronic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []