Diagnosing added value of convection-permitting regional models using precipitation event identification and tracking

2018 
Dynamical downscaling with high-resolution regional climate models may offer the possibility of realistically reproducing precipitation and weather events in climate simulations. As resolutions fall to order kilometers, the use of explicit rather than parametrized convection may offer even greater fidelity. However, these increased resolutions both allow and require increasingly complex diagnostics for evaluating model fidelity. In this study we focus on precipitation evaluation and analyze five 2-month-long dynamically downscaled model runs over the continental United States that employ different convective and microphysics parameterizations, including one high-resolution convection-permitting simulation. All model runs use the Weather Research and Forecasting Model driven by National Center for Environmental Prediction reanalysis data. We show that employing a novel rainstorm identification and tracking algorithm that allocates essentially all rainfall to individual precipitation events (Chang et al. in J Clim 29(23):8355–8376, 2016) allows new insights into model biases. Results include that, at least in these runs, model wet bias is driven by excessive areal extent of individual precipitating events, and that the effect is time-dependent, producing excessive diurnal cycle amplitude. This amplified cycle is driven not by new production of events but by excessive daytime enlargement of long-lived precipitation events. We further show that in the domain average, precipitation biases appear best represented as additive offsets. Of all model configurations evaluated, convection-permitting simulations most consistently reduced biases in precipitation event characteristics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    3
    Citations
    NaN
    KQI
    []