Nitrogen doped carbon fibers derived from carbonization of electrospun polyacrylonitrile as efficient metal-free HER electrocatalyst

2019 
Abstract Development of durable and efficient electrocatalyst for hydrogen evolution reaction (HER) is significantly important for forwarding the commercialization of water splitting technology. In this work, we report a facile synthesis of nitrogen doped carbon fibers derived from the carbonization of the electron-spun polyacrylonitrile (PAN) membrane at 800 °C (NCFs-800) as efficient and stable metal-free electrocatalyst for HER catalysis in both acidic and alkaline mediums. Ascribing to the homogenous nitrogen dopants in electrocatalyst, NCFs-800 requires only 114.3 mV and 198.6 mV vs. RHE to achieve current density of 10 mA cm−2 in 0.5 M H2SO4 and 1 M KOH electrolytes, respectively. Moreover, the HER activity is well maintained after 2000 potential cycles indicating that NCFs-800 possesses high durability in both acidic and alkaline conditions due to the fibrous structure with high corrosion resistance. Our study offers new strategy to synthesize stable and efficient metal-free electrocatalyst, which could be extended to other heteroatom doped carbon electrocatalyst.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    9
    Citations
    NaN
    KQI
    []