Comparison of a laser methane detector with the GreenFeed and two breath analysers for on-farm measurements of methane emissions from dairy cows

2018 
Abstract To measure methane (CH 4 ) emissions from cattle on-farm, a number of methods have been developed. Combining measurements made with different methods in one data set could lead to an increased power of further analyses. Before combining the measurements, their agreement must be evaluated. We analysed data obtained with a handheld laser methane detector (LMD) and the GreenFeed system (GF), as well as data obtained with LMD and Fourier Transformed Infrared (FTIR) and Non-dispersive Infrared (NDIR) breath analysers (sniffers) installed in the feed bin of automatic milking systems. These devices record short-term breath CH 4 concentrations from cows and make it possible to estimate daily CH 4 production in g/d which is used for national CH 4 emission inventories and genetic studies. The CH 4 is released by cows during eructation and breathing events, resulting in peaks of CH 4 concentrations during a measurement which represent the respiratory cycle. For LMD, the average CH 4 concentration of all peaks during the measurement (P_MEAN in ppm × meter) was compared with the average daily CH 4 production (g/d) measured by GF on 11 cows. The comparison showed a low concordance correlation coefficient (CCC; 0.02) and coefficient of individual agreement (CIA; 0.06) between the methods. The repeated measures correlation (r p ) of LMD and GF, which can be seen as a proxy for the genetic correlation, was, however, relatively strong (0.66). Next, based on GF, a prediction equation for estimating CH 4 in g/d (LMD_cal) using LMD measurements was developed. LMD_cal showed an improved agreement with GF (CCC = 0.22, CIA = 0.99, r p  = 0.74). This prediction equation was used to compare repeated LMD measurements (LMD_val in g/d) with CH 4 (g/d) measured with FTIR (n = 34 cows; Data Set A) or NDIR (n = 39 cows; Data Set B) sniffer. A low CCC (A: 0.28; B: 0.17), high CIA (A: 0.91; B: 0.87) and strong r p (A: 0.57; B: 0.60) indicated that there was some agreement and a minimal re-ranking of the cows between sniffer and LMD. Possible sources of disagreement were cow activity (LMD: standing idle; sniffer: eating and being milked) and the larger influence of wind speed on LMD measurement. The LMD measurement was less repeatable (0.14–0.27) than the other techniques studied (0.47–0.77). Nevertheless, GF, LMD and the sniffers ranked the cows similarly. The LMD, due to its portability and flexibility, could be used to study CH 4 emissions on herd or group level, as a validation tool, or to strengthen estimates of genetic relationships between small-scale research populations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    13
    Citations
    NaN
    KQI
    []