Model-based Navigation in Environments with Novel Layouts Using Abstract 2-D Maps

2021 
Efficiently training agents with planning capabilities has long been one of the major challenges in decision-making. In this work, we focus on zero-shot navigation ability on a given abstract 2-D occupancy map, like human navigation by reading a paper map, by treating it as an image. To learn this ability, we need to efficiently train an agent on environments with a small proportion of training maps and share knowledge effectively across the environments. We hypothesize that model-based navigation can better adapt an agent's behaviors to a task, since it disentangles the variations in map layout and goal location and enables longer-term planning ability on novel locations compared to reactive policies. We propose to learn a hypermodel that can understand patterns from a limited number of abstract maps and goal locations, to maximize alignment between the hypermodel predictions and real trajectories to extract information from multi-task off-policy experiences, and to construct denser feedback for planners by n-step goal relabelling. We train our approach on DeepMind Lab environments with layouts from different maps, and demonstrate superior performance on zero-shot transfer to novel maps and goals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []