Assessing the sensitivity of site index models developed using bi-temporal airborne laser scanning data to different top height estimates and grid cell sizes

2020 
Abstract Site productivity and forest growth are critical inputs into projecting wood volume and biomass accumulation over time. Site productivity, which is determined most commonly using site index models is also the primary criterion to consider many forest management decisions. Most of the previous research utilizing the remote sensing data for assessment of site index with forest height are based on the existing site index models developed with traditional dendrometric methods. However, these traditional methods are both time-consuming and expensive. This study demonstrates how bi-temporal airborne laser scanning (ALS) data collected within the 8-year period can be used for the development of site index models for Scots pine. The accuracy of ALS-derived models was assessed by comparison to the reference site index model developed based on data from stem analysis of 174 felled Scots pine trees. We evaluated the effect of different height metrics and grid cell size on the trajectory of site index models developed from ALS-derived measurements. Four methods of estimating top height from ALS point clouds were evaluated: 95th, 99th and 100th percentiles of point clouds and an individual tree detection approach (ITD). The models were created for a range of grid cell sizes: 10 × 10 m, 30 × 30 m, and 50 × 50 m. The results indicate that bitemporal ALS data could substitute traditional methods that have been applied to date for stand growth modelling. It was found that top height increment can be estimated by using both ITD approach and the 100th percentile of point cloud giving an appropriate top height (TH) increment estimation. Observed growth curves of reference trees agreed best with the trajectories that were obtained based on TH calculated using ITD method (R2 = 0.892) and 100th percentile (R2 = 0.797). In case of TH obtained from 99th and 95th percentiles only weak correlation was found: R2 = 0.358 and R2 = 0.213, accordingly. The height growth models developed with 95th and 99th percentiles of point cloud were not compatible with the reference model. We also found that grid cell size did not affect the model height growth trajectories. Irrespective of the grid cell size, the obtained model trajectories for the given method of TH estimation are nearly identical for cells 10 × 10, 30 × 30 and 50 × 50 m.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    7
    Citations
    NaN
    KQI
    []