Photoacoustic cavitation and heat transfer effects in the laser-induced temperature jump in water

2002 
The finite element method is employed to analyze photoacoustic cavitation and heat transfer occurring when modest temperature jumps (T-jumps) are induced by a laser in D2O solution, which may contain a small concentration of a protein or peptide sample. Cavitation can be initiated through a photoacoustic mechanism at intensities well below optical breakdown thresholds. Cavitation probability is related to test medium properties, initial temperature, T-jump magnitude and test region geometry. Parameters affecting thermal conduction losses are also examined because such losses limit the useful duration of the T-jump induced in protein folding experiments. From this study, guidelines are offered for reducing the occurrence of cavitation and extending the useful duration of the T-jump.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    57
    Citations
    NaN
    KQI
    []