Thermodynamic analysis of a new combined cooling and power system using ammonia–water mixture

2016 
Abstract In order to achieve both power and cooling supply for users, a new combined cooling and power system using ammonia–water mixture is proposed to utilizing low grade heat sources, such as industrial waste heat, solar energy and geothermal energy. The proposed system combines a Kalina cycle and an ammonia–water absorption refrigeration cycle, in which the ammoniawater turbine exhaust is delivered to a separator to extract purer ammonia vapor. The purer ammonia vapor enters an evaporator to generate refrigeration output after being condensed and throttled. Mathematical models are established to simulate the combined system under steady-state conditions. Exergy destruction analysis is conducted to display the exergy destruction distribution in the system qualitatively and the results show that the major exergy destruction occurs in the heat exchangers. Finally a thermodynamic sensitivity analysis is performed and reveals that with an increase in the pressure of separator I or the ammonia mass fraction of basic solution, thermal efficiency and exergy efficiency of the system increase, whereas with an increase in the temperature of separator I, the ammoniawater turbine back pressure or the condenser II pressure, thermal efficiency and exergy efficiency of the system drop.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    72
    Citations
    NaN
    KQI
    []