Impact of non-thermal particles on the spectral and structural properties of M87

2021 
The recent 230 GHz observations of the Event Horizon Telescope (EHT) are able to image the innermost structure of the M87 and show a ring-like structure which is in agreement with thermal synchrotron emission generated in a torus surrounding a supermassive black hole. However, at lower frequencies M87 is characterised by a large-scale and edge-brightened jet with clear signatures of non-thermal emission. In order to bridge the gap between these scales and to provide a theoretical interpretation of these observations we perform general relativistic magnetohydrodynamic simulations of accretion on to black holes and jet launching. M87 has been the target for multiple observations across the entire electromagnetic spectrum. Among these VLBI observations provide unique details on the collimation profile of the jet down to several gravitational radii. In this work we aim to model the observed broad-band spectrum of M87 from the radio to the NIR regime and at the same time fit the jet structure as observed with Global mm-VLBI at 86 GHz. We use general relativistic magnetohydrodynamics and simulate the accretion of the magnetised plasma onto Kerr-black holes in 3D. The radiative signatures of these simulations are computed taking different electron distribution functions into account and a detailed parameter survey is performed in order to match the observations. The results of our simulations show that magnetically arrested disks around fast spinning black holes ($a_\star\geq0.5$) together with a mixture of thermal and non-thermal particle distributions are able to model simultaneously the broad-band spectrum and the innermost jet structure of M87
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []