Magnesium isoglycyrrhizinate prevents cadmium-induced activation of JNK and apoptotic hepatocyte death by reversing ROS-inactivated PP2A.

2021 
Objectives Cadmium (Cd) induces reactive oxygen species (ROS)-mediated hepatocyte apoptosis and consequential liver disorders. This study aimed to investigate the effect of magnesium isoglycyrrhizinate (MgIG) on Cd-induced hepatotoxicity. Methods L02 and AML-12 cells were used to study MgIG hepatoprotective effects. Cd-evoked apoptosis, ROS and protein phosphatase 2A (PP2A)/c-Jun N-terminal kinase (JNK) cascade disruption were analysed by cell viability assay, 6-diamidino-2-phenylindole (DAPI) and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, ROS imaging and Western blotting. Pharmacological and genetic approaches were used to explore the mechanisms. Key findings We show that MgIG attenuated Cd-evoked hepatocyte apoptosis by blocking JNK pathway. Pre-treatment with SP600125 or ectopic expression of dominant-negative c-Jun enhanced MgIG's anti-apoptotic effects. Further investigation found that MgIG rescued Cd-inactivated PP2A. Inhibition of PP2A activity by okadaic acid attenuated the MgIG's inhibition of the Cd-stimulated JNK pathway and apoptosis; in contrast, overexpression of PP2A strengthened the MgIG effects. In addition, MgIG blocked Cd-induced ROS generation. Eliminating ROS by N-acetyl-l-cysteine abrogated Cd-induced PP2A-JNK pathway disruption and concurrently reinforced MgIG-conferred protective effects, which could be further slightly strengthened by PP2A overexpression. Conclusions Our findings indicate that MgIG is a promising hepatoprotective agent for the prevention of Cd-induced hepatic injury by mitigating ROS-inactivated PP2A, thus preventing JNK activation and hepatocyte apoptosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []