Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions.

2021 
We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN~2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between $-11.5$ and $-14.5$ mag. Their pseudo-bolometric light curves peak in the range $0.5$ - $9.0 \times10^{40}~\mathrm{erg~s}^{-1}$ and their total radiated energies are on the order of (0.3 - 3) $\times$~10$^{47}$~erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the $^{56}$Co decay. If the late-time power source is indeed radioactive decay, these transients produce $^{56}$Ni masses on the order of $10^{-4}$ to $10^{-3}$~\msun. The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km~s$^{-1}$, along with Ca~II features. In particular, the [Ca~II] $\lambda$7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN~2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    2
    Citations
    NaN
    KQI
    []