Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose

2021 
Abstract The sensitive colorimetric detection of glucose using nanomaterials has been attracting considerable attention. To improve the detection sensitivity, highly stable lentinan stabilized platinum nanoclusters (Pt-LNT NCs) were prepared, in which lentinan was employed as a mild reductant and stabilizer. The size of platinum nanoclusters (Pt NCs) was only 1.20 ± 0.29 nm. Pt-LNT NCs catalyzed the oxidation of substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) to produce a blue oxidation product with absorption peak at 652 nm, indicating their peroxidase-like properties. Their enzymatic kinetics followed typical Michaelis-Menten theory. In addition, fluorescence experiments confirmed their ability to efficiently catalyze the decomposition of H2O2 to generate •OH, which resulted in the peroxidase-like mechanism of Pt-LNT NCs. Moreover, a colorimetric method for highly selective and sensitive detection of glucose was established by using Pt-LNT NCs and glucose oxidase. The linear range of glucose detection was 5–1000 μM and the detection limit was 1.79 μM. Finally, this method was further used for detection of glucose in human serum and human urine. The established colorimetric method may promote the development of biological detection and environmental chemistry in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    14
    Citations
    NaN
    KQI
    []