Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context

2021 
Abstract Driven by the need for a sustainable energy transition and a paradigm shift in the energy and mobility sectors, the popularity of electric vehicles is on the rise. Learning curve effects and falling investment costs further accelerate the deployment of electric vehicles with lithium-ion batteries; and as a multi-purpose technology, they are predestined for serving multiple applications. In this work we present an electric vehicle multi-use approach for a German commercial electricity consumer with an electric vehicle fleet. We analyze which behind-the-meter and in front-of-the-meter applications are particularly suitable for electric vehicles from a techno-economic point of view. In addition to providing the mobility service, we investigate the applications self-consumption increase, peak shaving, frequency regulation, and spot market trading. For the implementation of the approach, we introduce a model predictive control framework in which a mixed-integer linear programming algorithm is combined with a semi-empirical degradation model. The approach is analyzed with the investigation of fleet sizes from 1 to 150 vehicles, different application combinations, possible energy shift between the energy partitions, bidirectional charging schemes, and degradation awareness formulations. The results show that the deployment flexibility and application synergies increase with the number of stacked services, leading to additional annual cash flows of up to 2224 EUR per electric vehicle as well as battery lifetime improvements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    0
    Citations
    NaN
    KQI
    []