NBS1-CtIP-Mediated DNA End Resection Regulates cGAS Binding to Micronuclei

2020 
Cyclic GMP-AMP synthase (cGAS), an important component of immune signaling, is hyperactivated in cells defective for DNA damage response (DDR) signaling. However, a direct role for DDR factors in the regulation of cGAS functions is mostly unknown. Here, we provide novel evidence that Nijmegen breakage syndrome 1 (NBS1) protein, a well-studied DNA double-strand break (DSB) sensor, in coordination with ATM, a protein kinase, and CtBP-interacting protein (CtIP), a DNA end resection factor, functions as an upstream regulator of cGAS binding to micronuclei. Upon NBS1 binding to micronuclei via its fork-head-associated domain, it recruits ATM and CtIP via its N- and C-terminal domains, respectively. Subsequently, ATM stabilizes NBS19s interaction with micronuclei, and CtIP converts DSB ends into single-strand DNA ends, and these two key events preclude cGAS from binding to micronuclei. Notably, we show that purified cGAS cannot form a complex with DNA substrates that mimic resected DNA ends in vitro. Thus, NBS1 together with its binding partners modify the chromatin architecture of the micronuclei and that plays a critical role in cGAS9s binding to micronuclei.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    1
    Citations
    NaN
    KQI
    []