Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle.

2020 
The biotransformation of phytosterol to androstenedione (AD) by mycobacteria is a unique process accompanied by energy-producing. However, high intracellular ATP content can severely inhibit the efficient production of AD. In this study, a novel citrate-based ATP futile cycle (AFC) and pyruvate-based AFC were constructed for the first time. Application of AFCs reduced intracellular ATP and propionyl-CoA levels and increased NAD(+)/NADH ratios and cell viability. The forced consumption of ATP promotes the transcription of critical genes in propionyl-CoA metabolism. The synergistic effect of enhanced propionyl-CoA metabolism and AFC increased AD conversion yield from 60.6% to 97.3%. The AD productivity was further improved by repeated batch fermentation using untreated cane molasses. The maximum productivity was 181% higher than that of the original strain. Therefore, the strategy of combining AFC and repeated batch fermentation is a valuable tool for the efficient and low-cost production of AD and other steroidal pharmaceutical precursors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    1
    Citations
    NaN
    KQI
    []