Safe and rapid development of capillary electrophoresis for ultratrace uranyl ions in radioactive samples by way of fluorescent probe selection for actinide ions from a chemical library

2018 
Abstract After the serious nuclear accident at the Fukushima Daiichi Nuclear Power Plant caused by the Great East Japan Earthquake in 2011, the development of feasible, safe, and highly sensitive analytical methods (in terms of low levels of radiation exposure and radioactive waste generation) for radioactive samples, especially actinide (An) ions, represents an important challenge. Here we propose a methodology for selecting appropriate emissive probes for An ions with very low consumption and emission of radioactivity by capillary electrophoresis–laser-induced fluorescence detection (CE-LIF), using a small chemical library of probes with eight different chelating moieties. It was found that the emissive probe L1, which possesses the tetradentate chelating moiety 1,10-phenanthroline-2,9-dicarboxylic acid (PDA), was suitable for detecting uranyl ions. The detection limit for the uranyl–L1 complex using CE-LIF combined with dynamic ternary complexation and on-capillary concentration techniques was determined to be 2.9 × 10 −12  M (0.7 ppt). No interference from the large excess of matrix metal ions was observed. This method was successfully applied to real radioactive liquid samples collected from nuclear facilities, including the Fukushima Daiichi Nuclear Power Plant. This strategy not only permitted the development of a safe and rapid analytical method but also provided insight into the coordination chemistry of An ion complexes. Specifically, the PDA structure provided substantial kinetic inertness to its uranyl complex; the formation of a ternary complex between uranyl–L1 and carbonate was revealed; and unusual interactions were observed between the π-electron systems of uranyl and the phenanthroline ring, which stabilized the uranyl–PDA interaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    8
    Citations
    NaN
    KQI
    []