Multiwavelength Observations of the Previously Unidentified Blazar RX J0648.7+1516

2011 
We report on the VERITAS discovery of very-high-energy (VHE) gamma- ray emission above 200 GeV from the high-frequency-peaked BL Lac object RXJ0648.7+1516 (GBJ0648+1516), associated with 1FGLJ0648.8+1516. The photon spectrum above 200 GeV is fit by a power law dN/dE = F0(E/E0)-{\Gamma} with a photon index {\Gamma} of 4.4 {\pm} 0.8stat {\pm}0.3syst and a flux normalization F0 of (2.3 {\pm}0.5stat {\pm} 1.2sys) {\times} 10-11 TeV-1cm-2s-1 with E0 = 300 GeV. No VHE vari- ability is detected during VERITAS observations of RXJ0648.7+1516 between 2010 March 4 and April 15. Following the VHE discovery, the optical identifica- tion and spectroscopic redshift were obtained using the Shane 3-m Telescope at the Lick Observatory, showing the unidentified object to be a BL Lac type with a redshift of z = 0.179. Broadband multiwavelength observations contemporaneous with the VERITAS exposure period can be used to sub-classify the blazar as a high-frequency-peaked BL Lac (HBL) object, including data from the MDM ob- servatory, Swift-UVOT and XRT, and continuous monitoring at photon energies above 1 GeV from the Fermi Large Area Telescope (LAT). We find that in the absence of undetected, high-energy rapid variability, the one-zone synchrotron self-Compton model (SSC) overproduces the high-energy gamma-ray emission measured by the Fermi-LAT over 2.3 years. The SED can be parameterized sat- isfactorily with an external-Compton or lepto-hadronic model, which have two and six additional free parameters, respectively, compared to the one-zone SSC model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    37
    Citations
    NaN
    KQI
    []