Improved Rectification and Osmotic Power in Polyelectrolyte-Filled Mesopores.

2020 
Ample studies have shown the use of nanofluidics in the ionic diode and osmotic power generation, but similar ionic devices performed with large-sized mesopores are still poorly understood. In this study, we model and realize the mesoscale ionic diode and osmotic power generator, composed of an asymmetric cone-shaped mesopore with its narrow opening filled with a polyelectrolyte (PE) layer with high space charges. We show that, only when the space charge density of a PE layer is sufficiently large (>1×106 C/m3), the considered mesopore system is able to create an asymmetric ionic distributions in the pore and then rectify ionic current. As a result, the output osmotic power performance can be improved when the filled PE carries sufficiently high space charges. For example, the considered PE-filled mesopore system can show an amplification of the osmotic power of up to 35.1-fold, compared to the bare solid-state mesopore. The findings provide necessary information for the development of large-sized ionic diode and osmotic power harvesting device.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    4
    Citations
    NaN
    KQI
    []