A Unified Theory for the Great Plains Nocturnal Low-Level Jet

2014 
AbstractA theory is presented for the Great Plains low-level jet in which the jet emerges in the sloping atmospheric boundary layer as the nocturnal phase of an oscillation arising from diurnal variations in turbulent diffusivity (Blackadar mechanism) and surface buoyancy (Holton mechanism). The governing equations are the equations of motion, mass conservation, and thermal energy for a stably stratified fluid in the Boussinesq approximation. Attention is restricted to remote (far above slope) geostrophic winds that blow along the terrain isoheights (southerly for the Great Plains). Diurnally periodic solutions are obtained analytically with diffusivities that vary as piecewise constant functions of time and slope buoyancies that vary as piecewise linear functions of time. The solution is controlled by 11 parameters: slope angle, Coriolis parameter, free-atmosphere Brunt–Vaisala frequency, free-atmosphere geostrophic wind, radiative damping parameter, day and night diffusivities, maximum and minimum surfa...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []