Difference in the characteristics and nutrient retention between the biochars produced in nitrogen‐flow and air‐limitation atmospheres

2020 
The different effects of nitrogen-flow (NF) and air-limitation (AL) pyrolysis on the characteristics and nutrient retention of biochars (BCs) are unclear. Hence, in this study, BCs derived from bamboo, corn straw, and wheat straw were produced in AL and NF atmospheres at various temperatures (300-750 °C), and their different characteristics and nutrient retention rates were compared systematically. Nitrogen-flow pyrolysis facilitates C retention and graphitic C formation, and AL pyrolysis improves the polarity and supports the formation of oxygen-containing groups. With increasing pyrolysis temperature, C retention and graphitic C formation in BCs derived from AL pyrolysis decreases more significantly compared with BCs from NF pyrolysis. At 750 °C, the polarity and oxygen-containing groups of BCs derived from AL pyrolysis increase, whereas those from BCs derived from NF pyrolysis decrease. The observations are attributable to the AL and high-temperature-enhanced oxidization and gasification of C. An AL atmosphere with a higher pyrolysis temperature supports porosity and results in a larger specific surface area. Although pyrolysis temperature and atmosphere have negligible effects on nutrient retention, a low pyrolysis temperature facilitates the formation of water-soluble Ca, Mg, and P, and AL pyrolysis facilitates the formation of water-soluble P because the high pyrolysis temperature improves the pH and mineral stability of BCs, and air limitation facilitates the oxidation of organic P into PO43- . This study provides a reference for selecting AL or NF pyrolysis based on various pyrolysis temperatures to produce BCs and applying these in C sequestration, contaminant sorption, and soil quantity improvement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []