Orbital Engineering in Nickelate Heterostructures Driven by Anisotropic Oxygen Hybridization rather than Orbital Energy Levels

2016 
We used resonant inelastic x-ray scattering to investigate the electronic origin of orbital polarization in nickelate heterostructures taking LaTiO3-LaNiO3-3×(LaAlO3), a system with exceptionally large polarization, as a model system. Furthermore, we find that heterostructuring generates only minor changes in the Ni 3d orbital energy levels, contradicting the often-invoked picture in which changes in orbital energy levels generate orbital polarization. Instead, O K-edge x-ray absorption spectroscopy demonstrates that orbital polarization is caused by an anisotropic reconstruction of the oxygen ligand hole states. This also provides an explanation for the limited success of theoretical predictions based on tuning orbital energy levels and implies that future theories should focus on anisotropic hybridization as the most effective means to drive large changes in electronic structure and realize novel emergent phenomena.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    25
    Citations
    NaN
    KQI
    []