A General Approach to Preferential Formation of Active Fe–Nx Sites in Fe–N/C Electrocatalysts for Efficient Oxygen Reduction Reaction

2016 
Iron–nitrogen on carbon (Fe–N/C) catalysts have emerged as promising nonprecious metal catalysts (NPMCs) for oxygen reduction reaction (ORR) in energy conversion and storage devices. It has been widely suggested that an active site structure for Fe–N/C catalysts contains Fe–Nx coordination. However, the preparation of high-performance Fe–N/C catalysts mostly involves a high-temperature pyrolysis step, which generates not only catalytically active Fe–Nx sites, but also less active large iron-based particles. Herein, we report a general “silica-protective-layer-assisted” approach that can preferentially generate the catalytically active Fe–Nx sites in Fe–N/C catalysts while suppressing the formation of large Fe-based particles. The catalyst preparation consisted of an adsorption of iron porphyrin precursor on carbon nanotube (CNT), silica layer overcoating, high-temperature pyrolysis, and silica layer etching, which yielded CNTs coated with thin layer of porphyrinic carbon (CNT/PC) catalysts. Temperature-co...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    480
    Citations
    NaN
    KQI
    []