Natural and anthropogenic oil impacts on benthic foraminifera in the southern Gulf of Mexico

2019 
Abstract The Campeche Sound is the major offshore oil producing area in the Southern Gulf of Mexico (SGoM). To evaluate the impact of oil related activities in the ocean floor sediments, we analyzed the geochemical (major and trace element, organic carbon and hydrocarbon concentrations) and biological (benthic foraminifera) composition of 62 superficial sediment samples, from 13 to 1336 m water depth. Cluster and Factor analysis of all the variables indicate that their distribution patterns are mainly controlled by differences between the terrigenous and carbonate platforms in the SGoM. Benthic foraminiferal assemblages were abundant and diverse, and their distribution patterns are mainly determined by water depth and sedimentary environment. However, most of the abundant species are opportunistic and/or low-oxygen tolerant, and many of their tests show oil stains and infillings, characteristic of oil polluted locations, suggesting the environment has been modified by natural seepage or oil-related activities. To determine if these conditions are natural or anthropogenic in origin, pre - industrial settings should be studied. Organic carbon (Corg) content (0.6–2.9%) and total hydrocarbon concentrations (PAHs 1.0–29.5 μg kg −1 ) were usually higher around the oil platforms area, the natural hydrocarbon seeps (“chapopoteras”) area and offshore rivers, but there is no accumulation of oil related trace elements in these areas. However, the comparison with international sediment quality benchmarks indicates that Cd, Cr and Ni concentrations are above the threshold effect level, and also As, Ba and Cu are above the probable effect level benchmarks, which indicate that these element concentrations might be of potential ecological concern. Comprehensive studies involving different proxies, and assessing pre-industrial conditions, must be undertaken before assessing environmental health of marine benthic ecosystems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    11
    Citations
    NaN
    KQI
    []