language-icon Old Web
English
Sign In

Impossibility of almost extension

2020 
Let $({\mathbf X},\|\cdot\|_{\mathbf X}), ({\mathbf Y},\|\cdot\|_{\mathbf Y})$ be normed spaces with ${\mathrm{dim}}({\mathbf X})=n$. Bourgain's almost extension theorem asserts that for any ${\varepsilon}>0$, if ${\mathcal{N}}$ is an ${\varepsilon}$-net of the unit sphere of ${\mathbf X}$ and $f:{\mathcal{N}}\to {\mathbf Y}$ is $1$-Lipschitz, then there exists an $O(1)$-Lipschitz $F:{\mathbf X}\to {\mathbf Y}$ such that $\|F(a)-f(a)\|_{\mathbf Y}\lesssim n{\varepsilon}$ for all $a\in \mathcal{N}$. We prove that this is optimal up to lower order factors, i.e., sometimes $\max_{a\in {\mathcal{N}}} \|F(a)-f(a)\|_{\mathbf Y}\gtrsim n^{1-o(1)}{\varepsilon}$ for every $O(1)$-Lipschitz $F:{\mathbf X}\to {\mathbf Y}$. This improves Bourgain's lower bound of $\max_{a\in {\mathcal{N}}} \|F(a)-f(a)\|_{\mathbf Y}\gtrsim n^{c}{\varepsilon}$ for some $0
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []