MiR-33a inhibits the adipogenic differentiation of ovine adipose-derived stromal vascular fraction cells by targeting SIRT6

2020 
Abstract Adipose tissue is important for the regulation of energy balance through its metabolic, cellular, and endocrine functions. Further, the excessive storage of subcutaneous fat can seriously affect the health and carcass traits of domestic animals. Stromal vascular fraction (SVF) cell adipogenic differentiation increases the number of differentiated adipocytes and plays a role in lipid deposition. The adipogenic differentiation of SVF cells is regulated by various factors including microRNAs and cytokines. Sirt6 and miR-33a are known to be involved in metabolism and adipogenesis, respectively; however, their effects on the adipogenic differentiation of ovine SVF cells were previously unknown. Thus, the aim of this study was to investigate this. Results showed that SIRT6 is a binding target for miR-33a. Moreover, overexpression or inhibition of miR-33a was found to change the expression of SIRT6 mRNA and protein. Further, modulating SIRT6 altered the expression of adipogenic marker genes. In addition, miR-33a and SIRT6 were found to play opposing roles in adipogenesis. Specifically, we demonstrated that miR-33a is involved in the negative regulation of ovine SVF cell adipogenic differentiation by inhibiting the expression of SIRT6. These findings reveal a key role for miR-33a and SIRT6 in adipogenesis, which will enrich our understanding of the regulatory factors associated with SVF cell adipogenic differentiation and provide a basis for further study on this process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []