Structure and phase transformation of alkali silicate melts analysed by Raman spectroscopy

2004 
Raman spectra of binary alkali silicates were measured at various temperatures from 1300°C to room temperature to investigate the relation between structural change and phase transformation phenomena. Distribution of structural units of Q n was estimated at each temperature by the deconvolution of spectra based on the equilibrium 2Q3 ↔ Q2 + Q4. The Q n distributions of sodium and potassium silicate systems strongly depend on temperature and the equilibrium shifts to the left-hand side with decreasing temperature, but those of lithium silicate system were less sensitive to the temperature variation. In alkali disilicates (33 mol% R2O–67 mol% SiO2, where R=Li, Na or K), the Q n distributions near the melting point were independent of alkali ion species, and they held the relation [Q2] = [Q4] ≈ [Q3]/4. This means that two of 6Q3 units (six-memberd ring) in crystals are transformed into a pair of Q2 and Q4 in the melting process. Below the melting point, the Q n distribution in lithium disilicate melt remaine...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    33
    Citations
    NaN
    KQI
    []